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DSN receiver thermal noise is a component of the Doppler jitter noise measured
during DSN system testing. This thermal noise has been modelled theoretically through
an evolution of approximations over a period of 20 years. The model is required to
predict the expected test result. This article compares the two latest and most accurate
models in order to determine if changes in the test algorithm are required for desired
accuracy. Also introduced is a new and highly simplified model that exhibits differentials
of the same order as the more complicated algorithms. The study concluded that the
three models are indistinguishable within the nominal operating range of the receivers.

l. Introduction

DSN receiver thermal (phase) noise is one contribution to
overall system noise, as measured during DSN system testing.
The test is mechanized to extract the noise as “Doppler jitter,”
sampled to include the majority of the frequency spread, and
reduced finally by the Allen variance technique to reject
long-term drift effects.

The receiver thermal contribution is predominant at lower
signal levels, but tends to be “swamped out™ at strong signal
levels by VCO noise, quantization noise, and similar sources.

However, for “pass-fail” criteria, a reasonable theoretical
model of expected thermal noise vs. signal level is required
across the entire range. Variations of this model have devel-
oped historically over more than 20 years. In order to consider
possible present ‘“‘update” of the existing test model, this
study was conducted. It compares the two most “recent”
models, and introduces a simplified exponential model with
comparable accuracy. These thermal models are, of course,

variance-added to models of other contributions to obtain
final estimates for total system Doppler jitter evaluation.

Il. Receiver Thermal Noise
Major Parameters

The prime parameter in DSN receiver design is a quantity
labelled 2 BL ,. This number, displayed on equipment push-
buttons for selection, represents the square-and-double-sided
phase noise bandwidth if the loop operated entirely linearly,
without detector signal-to-noise ratio (SNR) gain, and if the
output SNR (design point) variance were unity. 2 BL is,
therefore, entirely hypothetical, for these conditions are inex-
act. However, loop filter time constants and gain calculations
are determined for specified values of 2 BL , and all equip-
ment is structured by this design parameter, with conventional
linear optimization.

Now, given 2 BL , and a system operating temperature, an
exact (minimum) reference signal level can be expressed. It is
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the level when signal and noise power are equal and if the
noise bandwidth is exactly 2 BL , as referred to the receiver
input. Said another way, it is the signal that would exhibit an
(undetected) phase variance of unity if passed through a filter
(double-sided) with a width of 2 BL, Hz (open loop). This is
the reference level used in DSN testing. It has the value:

W, = KT (2BL,)

W, (in dBm) = 10log (7)+ 101log (2 BL )~ 198.6

W, = reference signal level, W or dbm

T = system temperature, K
K = Blotzman’s constant, W/K/Hz
2 BL, = reference (loop) noise bandwidth

In some literature, W, is 3 dB less, W0/2, at a point where
the hypothetical “linearloop” variance is unity. This discus-
sion avoids that definition for conformance with the DSN
testing approach, and as a common base in model comparison.

Using the above, W, in this discussion takes the role of
“minimum signal level” to be investigated. This is reinforced
by the fact that actual receiver thermal noise, all factors
included, results in a variance very close to unity at W,. This
is, therefore, in the vicinity of the original definition of thres-
hold, where the receiver is no longer reliably phase-stable; a
true minimum.

Results of this study are presented as jitter (standard devia-
tion, deg, the square-root of variance) vs. margin, dB for
various models and 2 BL,. Given W , margin (M) is easily
defined by the ratio of actual input signal level to W,

W
W

o

M=

w
M(dB) = 10 logw*-
o

0 <M (dB) < 50 (model spread)
W = actual signal level, W or dBm

Also:

M (dB) = W(dBm) - W, (dBm) (for test settings).

lli. Predetection Signal-to-Noise Ratio

The phase-lock-loop predetection limiter effects are func-

tions of the predetection signal-to-noise ratio, or PH in most
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literature. These effects are normally isolated as two-fold: the
signal suppression factor, « (signal gain), and the limiter per-
formance factor, I' (SNR transfer). Both effects are strictly
functions of PH; the I" factor (EXACT) model is quite compli-
cated. Model expressions for these effects are given in the
Appendix. However, these expressions are invalid without a
sound definition of PH itself.

Since PH occurs at a predetection point, and can be consid-
ered as due entirely to input levels, it is easily defined from the
predetection filter noise bandwidth, and previous notations:

W Y W
KT(BC) ~ KT(BC) "~ W,

PH

KT(2BL,) 2BL,
= XM=MX —-2

"~ KT(BC) BC

BC = Predetection (two-sided) noise bandwidth, Hz.

IV. The System Signal-to-Noise Ratio
Conversion

This concept, introduced by Yuen, describes a very clear-
cut model approach. It states that expected output thermal
variance (as on Doppler measures), can be modelled by two
discrete and simple steps, independent of the quantity of
nonlinear (sinusoidal) detectors in the signal path:

(1) Determine the total linear theory variance to output;
just consider all detectors linear. Double SNR (divide
variance by two) to account for detection enhance-
ment. The figure obtained is:

0> =02 (M) = 1/p

system SNR ratio

i1
H

= system phase variance (linear computation)

Q
i

(2) Convert the system linear variance from the Gaussian
to nonlinear modulo 2-IT (sinusoidal detector) value in
a sinusoidal conversion spectral density expression.
Yuen proved this valid.

These steps are used for the organization of both the
EXACT and approximate models.



V. Expected Doppler Receiver Thermal
Noise, E (o)

The general algorithm for thermal noise, using conven-
tional loop design by Jaffee/Rechtin can be organized as
follows:

Inputs:

2 BL , = Design point loop noise bandwidth, Hz

o

BC

Predetection noise bandwidth, Hz
T = System temperature, K
W(dBm)

Input signal level, dBm.
Prime quantities (all models):

W,(dBm) = 101log (T)+ 101log (2 BL,) - 198.6

M(dB) = W(dBm)- W, (dBm)
M(dB)
10
M =10 1<M<10°
_ BC
PH = 5 BL, X M.

The algorithm proper follows two major steps:

STEP NO. 1:
%2 =1 1 X [%+%0—7—} X T' = system variance
p 2M o (linear computation)
a = F(PH)|,, Expressions vary
_ - among
o, = F(PHEM D models. See the
T = G(PH)| Appendix.
M
STEP NO. 2:

E(0) = H, (0,?) (Simon/Lindsey/Yuen) (EXACT)

H, (0Q2, afa,) |, (Tausworthe) (approximate)

The algorithm, thus, involves the calculation of W,, M, PH,
a, T, 0,2, and E(0). The first three are elementary, requiring
compatible interpretation only. The last three are model-
peculiar and somewhat complicated. The factor I is not pres-
ently available expressed in exact form.

Three models of the above are given in detail in the
Appendix:

(1) The original Jaffee-Rechtin linear model

(2) The Tausworthe linear spectral analysis model (in use
for DSN testing)

(3) The Simon/Lindsey/Yuen EXACT Model

The first model, linear, is plotted throughout the literature
and this plot will not be repeated. The second model, on a
straight plot, was indistinguishable from the third, or EXACT
model. This latter model is plotted, in the range of interest, in
Fig. 1.

Using this EXACT model as a standard, the differential
between it and the second, or Tausworthe (presently in use
within the testing algorithm), is shown in Fig 2, as a function
of margin. Except for a 2 degrees difference at low margin
(M =1), the two models agree within 0.5 deg, with a small
bias. The RMS of the differential is 0.4 deg, two bandwidth
ratios, inclusive. If the 2 deg differential near M =1 is disre-
garded, the overall RMS differential drops to 0.18 deg.

There appears to be little point to changing the DSN
algorithm to the EXACT model, for differentials on the order
of those above are essentially “masked” by other noise contri-
butions in the system.

However, there is an elementary approximation to the
EXACT model, developed by the author; the description fol-
lows. It might be worthwhile to use this in testing for algo-
rithm simplicity.

VI. The Exponential Approximation Model

A quick glance at Fig. 1 suggests that the full model, with
decibel abscissa and standard deviation ordinate, appears to
approach the form of a simple exponential decay.

When this form was tried, with coefficients to fit the end

points (margin 0 dB and 50 dB), the resulting exponential fit
was within 3 deg throughout. The error plot had the form of
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the Gaussian derivative. This led to the following two-term
exponential model:

2
—a, XM %2 (1__)
E(0) = 55.12¢ +MXae 0

——am— i
Main Trim
Approximation Term

M = Margin in dB

A variation-of-parameters closure program was applied to (1),
vs. the EXACT model, and minimum RMS differential for the
receiver bandwidth ratios was obtained (see Table 1). The
deviations of these approximations from the EXACT model is
shown on Fig. 3. The overall RMS of the deviations is 0.22
deg. This level, as with the Tausworthe model, would normally
be masked by other contributions.
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V. Conclusions

Three nonlinear models for receiver thermal noise were
investigated. Within the range of interest (0 dB to 50 dB mar-
gin), differences between the models were indistinguishable.

One of the models, the Tausworthe or linear spectral den-
sity approximation, is presently in use for DSN system testing.
There appears to be little practical advantage to altering the
algorithm at this time.

Another model, the Simon/Lindsey, or EXACT algorithm,
is complicated to program, but generally considered the most
accurate noise prediction available. It might be reasonable to
incorporate this model at some future date during general
software update.

Finally, the third model, or Exponential Approximation,
by the author, is by far the simplest expression for thermal
noise that is presently on hand. It is seen as useful in abbrevi-
ated programming and, possibly, as a future general-purpose
design and test-predictive expression, replacing even the
EXACT model when simplicity is desired.



Table 1. a,,a,,a,, coefficients

Block BC/2 BLo (Typ) a, a a,
I 166.7 2000/12  0.11288  0.58027 0.21658
v 66.67 200/3 0.11198  0.55579 0.26151
1\% 200 2000/10 0.11364 0.59611 0.21125
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Fig. 1. Receiver thermal noise exact model
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Fig. 3. Deviation between exact and exponential
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Appendix

Receiver Thermal Noise Models

(A) Original Linear Model
Jaffee/Rechtin Linear Loop

4 1 172

» 1" py
T IO NN

I PH

PH = PH (1)
G =1
(4) £(0) = o, (no conversion)

180
g® = o %

This model applies in the strong-signal (M > 20 dB) range
only. It considers the detector completely linear, and the
limiter as a device that simply holds its power output
constant. The model is not considered in the comparison.
E(0) is in error by nearly 50 percent at unity margin. It
does, however, provide criteria for DSN receiver design,
which normally operates near strong-signal levels.

(B) Study Model No. 1

Tausworthe Nonlinear Approximations (used for DSN
testing)

2 o1 yjl,2a
1) o 2M><l:3+3a0 X T

2) a-=

1/2
0.7854 PH + 04768 PH? "/
1.0 + 1.024 PH + 0.4768 PH?

a = alPH(M = 1)]

[e]

PH

) T = Gaen s i

o)
(4) 0522 = Al___ea2—
(5) 1+2a2 (1 _ed aze_a2/2> 1/2

(1+r) "(l—e_a )2
1+r ( 1-e¢@ )
22

02 = %2 [:1 - e,—3a2/172 (1 + 0.13a2)]

o 01y = 2002 )

NOTE: Parametric equation in o2 until agreement to 10~4 in
0. Place 042 in 0? for modulo 2.

a? is the variance of a phase process and is iterated before
being converted to modulo 2#. The algorithm is called
linear spectral analysis approximation, and also uses alge-
braic approximations to EXACT expressions for & and I\

(C) Study Model No. 2

Simon/Lindsey and Yuen EXACT Conversion (near
approximation)

1 1 2«
1 2= - —+Z= =
()ax2 2Mx[3+3ao]xr

L <PH/2 P_H) PH
4PHe [IO<2 +I1 5

a@M =1

0

2) a

(=4
]

167



—PH
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4 PH X e x[10(2)+11<2)] [“(T 1)e mf
(INEXACT)
1
4 p=—
O
T 42 P cos(®) 4
E (02) = L ¢__.?_____¢.
2m I (p)
-

Hi

N2

S L®
S
N=1

o - 180

P g

X)2M

XP 2

L, (x) (‘2‘) ) IR VINTEINY
M=0

This is the most accurate model presently available. It was. used as the standard for
comparison.
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